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Volcanic Ash
• Volcanic ash has the potential to

cause a variety of severe problems
for human health and the environ-
ment

• Effective monitoring of the disper-
sion and fallout from volcanic ash
clouds and characterization of the
aerosol particle properties are essen-
tial for assessing the hazard and its
effect on Earth’s radiation budget

• One way to acquire information
from volcanic ash clouds is through
satellite remote sensing

• Size distribution, sphericity and op-
tical properties of volcanic ash are
often a pre-requisite for making ac-
curate and quantitative retrievals

• The same kind of information is also
needed for atmospheric transport
models to properly simulate the dis-
persion and fallout of volcanic ash

• The micro-physical and optical
properties vary significantly be-
tween eruptions, which can occur
under very different conditions

Figure 1: Schematic diagram showing the im-
portant environmental and climate effects of vol-
canic ash (in grey) and mineral dust (in yel-
low). (CCN: cloud condensation nuclei; IN: ice
nuclei) [1]

Method
• Presented here is a laboratory

method to determine the micro-
physical and optical properties of
volcanic ash samples collected from
different volcanic eruptions with
markedly different compositions

• Some samples are measured at dif-
ferent humidity levels (dry and wet
conditions) to study the effect of hu-
midity of the particles

• The technique uses a Fluidized bed
Aerosol Generator to re-suspend ash
particles that are then sampled by a
CPC and polar nephelometer before
being impacted on a Nuclepore Fil-
ter

• Using a reflectance measurement
setup, mass absorption efficiency is
measured[2]

Figure 2: Schematic diagram of the experimen-
tal setup

PI-Neph(Polarized Imaging Neph-
elometer)
• The PI-Neph measures angular light

scattering and polarization of the re-
suspended particles from 3◦ to 175◦

in scattering angle, with an angular
resolution of one degree [3]

• The PI-Neph uses a three wave-
length laser system, polarization op-
tics, and a wide field of view imaging
camera

• Measures P11 and P12 elements of
the scattering matrix

• Size distribution, sphericity and the
refractive index of the aerosol will
be retrieved using the GRASP al-
gorithm [4]

• Used in NASA aircraft campaigns -
SEAC4RS[5], DC3, DEVOTE and
DISCOVER-AQ

Figure 3: Polarized Imaging Nephelometer(PI-
Neph)

Figure 4: Forward and backward scattered light
imaged using wide FOV camera

Result & Discussion
P11 and -P12/P11 of volcanic ash sam-
ples measured using PI-Neph and the
retrieved PSD are plotted in this sec-
tion. The list of ash samples includes:
• Novarupta(1912)
• Mt. Spurr (1992)
• Mt. Okmok (2008)
• Mt. St. Helens(1982)
• Mt. Eyjafjallajokull (2010)
• Mt. Pinatubo (1991)
• Volcán de Fuego (2012)

Mt. St. Helens and Mt. Eyjafjalla-
jokull samples are measured at dry and
wet condition by changing the humid-
ity of the sample

Figure 5: Mt. Spurr, Mt. Okmok and No-
varupta ash measurement and retrieved PSD

Figure 6: P11 and -P12/P11 of Mt. St. Helens’
ash samples measured using PI-Neph. For this
experiment, cyclone was used for separating PM1
and PM2.5 particles. Also, two humidity levels
are used, RH<10 (Dry) and RH>40 (Wet) for
the measurements

Figure 7: PSD retrieved using GRASP for the
Mt. St. Helens ash samples with different humid-
ity levels

Figure 8: Mt. Spurr ash measured at differ-
ent cut off limits ( No cut off(Blue), PM1(Red),
PM2.5(Green)

Figure 9: P11 and -P12/P11 of Mt. Eyjaffjalla-
jokull ash samples measured using PI-Neph. For
this experiment, cyclone was used for separating
PM1 and PM2.5 particles. Also, for each case
two humidity levels are used RH<10( Dry ) and
RH>40 ( Wet )

Figure 10: P11 and -P12/P11 of Mt. Pinatubo
ash samples measured using PI-Neph. Dots are
measurements and solid lines are GRASP fit

Figure 11: P11 and -P12/P11 of Volcán de Fuego
ash samples measured using PI-Neph

Figure 12: Retrieved real refractive index(RRI),
imaginary refractive index(IRI) and Single scat-
tering albedo (SSA) for different samples

Figure 13: Mass absorption efficiency αabs of the
volcanic ash samples measured using a reflectance
measurement setup mentioned in technique de-
scribed by Rocha-lima et. al 2014[6]

(a) Mt.Spurr (b) Novarupta

Figure 14: Particle shape distribution derived
using ImageJ and 2D SEM images of ash samples
collected on a Nuclepore filer

Preliminary Observations
• The imaginary part of refractive

index retrieved using GRASP for
three Alaskan volcanic ash samples
are consistent with the mass absorp-
tion efficiency spectrum measured
using particles collected on a fil-
ter and a reflectance measurement
setup

• Mt.Spurr ash have much smaller
particles than the Mt. Okmok and
Novarupta ash

• Highly non-spherical particles,
sphere fraction ≈ 0

• Minimal spectral dependence in the
visible region for P11 and -P12/P11

• In the near UV wavelengths ash
absorption decreases monotonically
with wavelength

Future Research
• Derive particle size and shape distri-

bution using SEM images and Im-
ageJ software

• Measure the chemical composi-
tion of ash sample using Energy-
dispersive X-ray spectroscopy to
find its relationship with micro-
physical and optical properties of
volcanic ash

• Asses the assumptions in satellite
retrieval algorithms and improve
the accuracy of quantitative esti-
mates of the ash mass loading and
other properties using the micro-
physical and optical properties de-
rived from this study
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